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The Asymptotic Behavior of the Likelihood Ratio Statistic 0

for Testing a Shift in Mean in a Sequence of Independent Normal Variates '::?-. -.. .-..... .

* 0

by

Yi-Ching Yao and Richard A. Davis * .
Colorado State University

ABSTRACT

Let X, ..., X be an independent sequence of random variables such that

X19 ... ,I X r lid N(u, a2) andX+I1 ... , X n N iid N(p + e, a2 ) where u, e # 0,

02 and r are unknown parameters. The asymptotic properties of the likelihood

ratio in testing H 0r -n (no change point) vs. HI: r < n are derived. It

is shown, using a result of Darling and Erdis, that the likelihood ratio, .

suitably normalized and under Honverges in distribution to the double expo-

nential extreme value distribution. The asymptotic operating characteristics

of the likelihood ratio test are studied and comparisons are made between the . . -:

likelihood ratio test and a Bayesian test.

S

Running head: Testing a shift in mean.
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1. Introduction

" aconsiders$the problem of testing a sequence of independent and normally

distributed random variables with common mean against alternatives involving a -.

shift in the mean at an unknown time point. Specifically, let XI, ... , X be
-n

an observed independent sequence such that X1, iid N(, a2) and

Xn  iid N(p + e, a2) where v, 8 # 0 and r(l< r < n) are unknown and a is
n

either known or unknown. We want to test Ho . r - n vs. H r < n. Chernoff and
0

Zacks (1964) derived, by assuming e > 0, a one-sided test statistic through a

Bayesian argument. Their results were generalized to the one-parameter exponential

family by Kander and Zacks (1966), and to two-sided test statistics by Gardner

(1969) and MacNeill (1974). The asymptotic operating characteristics of these

Bayesian tests were also studied by Gardner (1969) and MacNeill (1974). Sen and

Srivastava (1975) derived various likelihood ratio tests and compared them to

Bayesian procedures using computer simulations. Hawkins (1977) discussed

heuristically the asymptotic null distribution of the likelihood ratio test.

Unfortunately, his reasoning is not entirely correct (though the leading term is

of the right order).

- The purpose of this paper is to study the asymptotic operating charac-

teristics of the likelihood ratio test. In the next section, Ve derive, by in-

yoking a result of Darling and Erdbs (1956), the asymptotic null distribution of -

the likelihood ratio test, which is related to the extreme value behavior of the

Ornstein-Uhlenbeck process. In Section 3,-we-sdy the asymptotic operating

characteristics of the likelihood ratio test and make comparisons between likeli-

hood ratio and Bayesian tests.

2. Asymptotic null distribution of the likelihood ratio test S

Throughout this paper, we assume a is known since the case of a unknown

." .- .-..-.. '.- ..- .. -. ." -.-..-.,-.v-.-.--...-.......................................................-..--.--.-.--.--.*"-" '". "



-2-

is asymptotically equivalent to that of a known (see Remark 2.4 at the end of

this section). So without loss of generality we set a -1

Given a change in mean occurring between r and r + 1, the maximum likelihood

is proportional to -x rrX + (X1 - v, i where i denotes the

sample mean of the first r observations and V' the sample mean of the last n - r
r

observations. So the (generalized) minus log likelihood ratio of H 0vs. H 1is

proportional to (see for example Sen and Srivastava, 1975)

(2.1) T max (Xi j )2 - X j (X )2 .- (Xi X) 2j

n ~ nr

S
r r_

max n____n_

1<r<n-l r r
n n

where S r X I+ .. + X r. Suppose {W(t); 0 <t < is a standard Brownian

*motion. Since under Hg {(S -r Ol)//; 1 -c r <n) - W(-); 1< r < n), wer - -n

have

S
(2.2) T max r- __ -( -/( ( 1 )

n lr<n-I vr-n ,, n ' n

*max IW(t) -tW(1)l/(t(l-t))

*where means "equal in distribution" and W (t) - W(t) -tW(1), (i.e. Brownian
0

bridge). Throughout, we shall use the convention that max - max .

nt-l,... ,n-l 1.cntcn-l

. . . . . . . . . .



Theorem 2.1 Under Ho,

lim P(a' (T -b < <x) =exp(-2n r1e-x), -- <- <c
iic n n_

whrea (2 2 n) b a~ + 21 a in n and Ink is the k-th iterated

logarithm.

We need the following lemmas to prove the theorem.

Lemma 2.2 (Theorem 2 of Darling and Erdbs, 1956)

lrn P(a- 1 a b < x) exp (-nrl e c <
n nt

Lemma 2.3
IW (t) I

max - max I W(t)I
1<nt<[n/kn n] wrt7l-t) lcnt<[n/kn n] ,.-o (a n)0

Proof. For it large and t < 1/Zn nt, we have

IW(t) - tW(1) 1  1 ~)I W(t) - tW(1) W(t)l

t (-t) - t rt-(-l-t

< (in nt) (JW(t)l + 21W(1)1).

Therefore,

.4. (t.'S

max 10 )I - max . )S;'iI
1cnt<[n/En nt] vt-(1-t) 1<nt<[n/in nt] rt

mx1W 0(01 _ IW(t) I9

(in n) a (IW(t)I + 21W(1)1)
1<ntc In/in n])

0MO(n n)).1S
p
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Lemma 2.4
JW(t)j
a- M 0 ((tn n) )[n/in n]<nt<[n/2] Ft(-t) p

Proof. By the law of the iterated logarithm, for t small enough,

tw(t)I < 22t £n2 t- , W.P.l.
2!

It follows that as s 0+,

max _W(t) 0 p(( -l
t ie s,i/2] rt ...

so that jw(t) x

ma~x 0 W -IaxO + max IW(Il
[n an n)<nt<[n/2 - [n/in n]<nt<[n/2] Wi n/tn nl<nt<[n/2J V -t

= nn n) ) + 0p(1).

Lenma 2.5

lim P(a ( max I(-t)- b < x) exp(- -x
fl4~ l<nt< [n/in n] - x e,

Proof.' Since {W(t; t n n {-(t); t - 1, ... ,[n/tn n]),
- ' n

it follows from Lemma 2.2 that

P( max< a~nt n x  + b n/ nn )  . exp(-- e-X)
* ~ P(max i Ia

l<t<[n/tn n] [nx

But,

.a[n/n n] an + o(an) and b Wi n n] n o(a

which establishes the lemma by the convergence to types result. U

_eum 2.6 1.
-D o )0 max ) O (an) "

"-' lnt<[n/2) t(l-t) l<nt<[n/tn n] ,j p n

. Proof. From Lemmas 2.3 and 2.5, we have

-2:"............................ ........... ..[ ,:.-'...:.- ,...~~~~~~~~..... .......... . .. : :.':,.'. ..'..'.< . .•"....... -
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1W0(t) I n-)--
(2 In2 n)

-  max 1 1 in probability.
l<nt<[n/in n] lt(l-t)

This property and Lemma 2.4 together imply 0

IW(t)l IWo(t) I -
p( max max ) fl- o ... i

in/in n]<nt<En/2] /t-(l-t) l<nt<[n/in n] vrt(1-t)

Now, applying Lemma 2.3 completes the proof.

Lemma 2.7

max w(tl max Iw(t) - W(1)!l o (a )-l<n(1-t)<[n/2] Vit-(1-t) l<n(1-t)<[n/.En n] vrl- -i-t i

Proof. This follows from Lemma 2.6 and the symmetry of the Brownian bridge

Wo(t) with respect to t = ; i.e. (W0 (t); 0 < t < 11 = { 0(1-t); 0 < t < 1

Proof of Theorem 2.1. We have

1W (t) I
P(T < a x + bH) P( max <a x + b)

n n no l<nt<n-l I(1-t) nn

1Wo(t)i 1W (t)f l
P( max <a x + b max <a x+b)

l<nt<[n/2] t(l-t) n n l<n(l-t)<[n/2]rt(l-t) n .

which by Lemmas 2.6 and 2.7 is equal to

P( max IW(t)I < a x + b max 1W(t)-W(1)l< a x + b) +o(I)1<nt<[n/kn n] Ft - n n l<n(l-t)<[n/Xn n] vri - i •".

+ exp(-2 -  e-X).

by Lena 2.5 and the independence of the increments of Brownian motion. ..-

Remark 2.1. From extreme value theory, it is known that the extreme value of

a Gaussian sequence converges to its limit distribution very slowly. Therefore, .

one must be careful in using the limit distribution as an approximation for

finite n.

Remark 2.2. Hawkins (1977) approximated the asymptotic null distribution by

that of the maximum of In n consecutive observations from a weakly dependent

stationary Gaussian sequence. Appealing to a result of Berman (1964), this

. - "% ' ,° - °% " - o° , " . ,,•, -' - '° " -  . . -. . °o ' • . • -- • ,. i . -'° _ ". % " ' . ' °' i . °. ' °.' ' '. -. ? •' ' ''- o- . . 'i '- . 3. °" "" "
.. .. : - .- , ..- .," . -' .- .-. - - ..-. -.. -.. - .. ... ... . .' .'. . . '. . . .' . '.. - .. ... .-. , .. . " , . - , , , .. " , . . - . • . . - , ,. % - . - . , .- , . -' .-' . " .'. .'. . - . .1
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statistic has the same limit distribution as the maximum of in n observations

from an iid N(O, 1) sequence. However, since W(t)/v'r - X(3 in t) where X(t) is

the Ornstein-Uhlenbeck process, the above argument shows that the null distribution

is approximated by the extreme value (in continuous time) of the Ornstein-Uhlenbeck

process. The normalizing constants for the maximum of this process differ from
p

those of the maximum from an iid N(O, 1) sequence (cf. Leadbetter, Lindgren and

Rootzen, 1983) which accounts for the discrepancy between the normalizing constants

in Theorem 2.1 and those suggested by Hawkins.

Remark 2.3. The statistic T was derived from the two-sided likelihood ratio
n

(i.e. 8 could be either positive or negative). If it is given that e < 0 (i.e.

downward shift in mean), a statistic derived from the one-sided likelihood ratio

is (cf. (2.5) of Sen and Srivastava, 1975)

S Sr r n

(2.3) T' = max 0, max -

\ l<r<n-l r r

n

Applying Theorem 1 of Darling and Erdbs (1956) and following the pattern of

the proof of Theorem 2.1, it can be shown that under Ho,

(2.4) lir P(a- " - bn) < x) - exp(-V - e-x), - < x <n n n -
n1-

Remark 2.4. When the common variance 02 is unknown, the likelihood ratio sta-

tistic of H vs. H becomes
0 1

a 2 n/2 (n 012 \f/2
min (in rmr
]<rn- a oi<r'n-l n a

"- n <_<- 0 n )i(X - X) 2

-- (xm-aX) - (xi - x).

i- i iir(nr il

." . . . • . , '. . . . - . . . . . - • . , . . , • , , • , • . , • . . , , - . .. .

1 "-"-""

... . . . . . . . . . [ - = i ' -" . .7'-
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2r 2 n2

where a n(X i(-X_') (. So a test statistic is
r r ri-1 i-r+l .

Tn ma a (Xi  X - (Xi  X) (Xi  X')
;2  1<r<n-i i=l i-I i-r+l

where a large value of T" indicates significance. The random variable
n

-2[ n 2 r 2)2
S(X X (X X (X X') ] has the same null

l<r<n-i i=l i=l i-r+l

distribution as the likelihood ratio statistic under the condition of a being

known equal to 1. We also have, under Ho,

02 n+0(n-=l+ 0(n-
oF2 p

n

Therefore, the likelihood ratio statistic for both cases of a known and un-

known has the same asymptotic null distribution.

3. Operating characteristics of the likelihood ratio test {T .. .

We shall compute the local powers of T and compare the performance of T
n n -.

L nilrn-l 1
and the Bayesian statistic U (X - ) (see (1.3) of Gardner

(1969), assuming the uniform prior distribution on the location of the change

point).

Let a be a given significance level. From Theorem 2.1, lir P(T > cn ) = 0-  n*

where

(3.1) cn - b - a tn[2 -  7 tn(l - a)-]
n nn

We consider the alternative H(t°" n, n) that there is a change between [n t 0

and En t I + 1 and the amount of (positive) shift in mean is
0

(3.2) e (n t 0(1-t 0))-If(M n 2 )I+n ~)

where t and n are two constants with 0 < t < 1. (The results below are
0 0

exactly the same for negative shifts.)
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Theorem 3.1.

lim P(T n> c n H(t 0 n., n)) a + 0(n)(1 a c)

-7where 0~(-) is the standard normal cdf.

Proof of Theorem 3.1.

Again, let W (t) -W(t) -tW(l) be a Brownian bridge. Under H(t 0  TI, n),
00

S S
(3.3) T max rE __ r fl,"~(l r

lcr<n-l Iv n n n

DI

where

(3.4) f n(t) n e (1 [ n t 0]/n)t if nt < En t 0],

0

n e -n0  (1-t) if nt > En t 1.n0

Denote by E Q (1 < Z. < 6) the event that

where

D -{k/n: I < k < Wn/n ni)n'l

D -{k/n: n-En/n n<k <n-n,2

n,30

D { k/n: En t I + [n(In n) a~) < k < n1 - En/tn niln,4 0 /(Z' 2  I

D {k/n: [nt)- n(Inn) /(i n~)) < k <E[n t Io 3 2 0

D {k/n: Ent < ] k < (n t0  + jn( tn 3n)/(In2 n) ]

Obviously,

P(T > c Ili(t., n, n)) -P( max IW(t) -f (t)I/(t (1-0) >C)

0 1<ntcn-1

6

-P(LV E ).

L-l 1199
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We now break up the proof into a few lemmas.

Lemma 3.2

n,1

P(En,2  ax ____ Wl) > C n) 0 (1).

(A denotes symmetric difference.)

Proof. We only prove the first equation. The second one can be done similarly.

For 1 < nt < [n/9n n] and n large, we have

C'~-t 2 - = 2(nl 8)(1 - n )ft~

and using (3.2), this bound is O((9.n n /in ) - o(a ) uniformly in tED2n n,l*

S,1W (t)I -W w(t) - f (t) =l a

P(E )=o(l), I9- 3,4.

Proof. We only consider the case Z - 3. From Lemmna 2.4,

ma~x =W0(0 0 ((n n)3).
tf.D rt-c p

n,3 tl)

Also for n large,

Ifn(t)I
max n max n e(1 - [n t ]/n)(tl(l..t))
teD lT (I -t) t#D0

n,3 n ,3

- (nil e) (l E n t 0In)(t/(l-t))1' at t t * n-l([n to 01 ]

to0 -(Zn 3 n)/(Zn 2 n) + +~



-10-

Et (1-t )]);((2 In n)1 + n + o(l))(1 -t + 0(nl ))(t*/(l-t*))
0 0 20

-(2 1 n 2 n)1 -Il (1 ))Z +W(Ol-O

Therefore, the lemmA follows from the inequality

1W (t) f f(t)J

max-t p n n);,) + (2 In 2 n))

- I(1 + o(l) Xkn n)/ (t (l-t).[

Lemma 3.4

P(E n,9 {(t (l-to)) n e Wt > C 1)n o(l), 1~ 5, 6.
fl~9. 0t .'(1-t ) f

o o

Proof. Once again we only supply the proof for one case 1. 5. Observe that

f (t
*(3.5) max n .. , ((1- t )t )i + O(nn3/) ( nnL

*and since W (t) is W.P.l continuous

00

* (3.6) max 0 ~) W~ 0  (1).

pp

f (t) -W (t)n 0
It follows that R n max is eventually equal to

n e tD It (1-t)
n,5

max~w ~ f(t) .Set Z =(t (1-t ) n 6 W (t )(t (1-t ))* It thus

tkD n7 0 01 0 0n
n,5

* suffices to show that for every e > 0,

(3.7) P jZ -Rn > 6) +0

* and

(3.8) lim limsup P(c e < Z < c + 6) -0.
~ -~ n -n- n

We have



f (t) W (t) - R -
n 0___

ma..- maxZ<R Z
tFD 5 t (l -t) tD 5 V/t (1-0 n- n n

< max ~n() -min .(t -zn
tC-D n5/tT3 E*n I'-t) n5 t

By (3.5) and (3.6) the two outside terms of this inequality are both o (1) +
p

O((Yn n) In) = o (1) which proves (3.7). As for (3.8), we have c -(t (l-t ))-n 6-82p n 0 0

n+~4 o(l) so that

lim limsup P(Cn -6< Z n<c n+Eilim P n- 0 0 < +
&40O n- 6 t(-

=0.

Continuation of the proof of Theorem 3.1: First it is a straightforward

calculation to show

(3.9) P({(t (1-t ))n W (t)/Mt (1-t) >Cit A A o(l)
0 00 0 0 0fn l

where - -
{( lt) -[W(t) 0 W((Zn n) t 0 (W(1-(Xn n) ) W((Ln n) ))

(t (t11-t nt > Cl
n 0 0(t01t0

By (3.9), Lemmas 2.5, 3.2-3.4, and the independence of the Brownian increments, 0

we have
6

P(T n c nIH(t,* n, n)) =P( U E n~)

PImax W(t) > c I{max IW(t) - w(1)I > c IU A )+ o(l)
tEnin tD 2 n n

a + it)1cs.I

2 -I n-i
MacNeill (1971) studied the asymptotic behavior of U n r(i X +14

We state his results under H and under the alternative H'( t, iP n) that there is a
0

change between [n t and En t I + 1 and the amount of shift in mean is *n ;.
0 0
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Lemma 3.5
V1

(i) Under Ho, U W2(t)dt 5
n. 00

(ii) Under H'(to, ', n),
1 - -

U n / (W (t) + h(t)) 2dt
0

00*where h(t) in'Pt t 0< t <1- t
l-o - 0<t_

- P (-t )(1-t), 1-to t<

We now compare the two tests relative to two sequences of alternatives both

of which are approaching H (in some sense). For the first comparison, to is0 0

fixed and a sequence of shifts (to, a, O)n converging to 0 is specified so

that the sequence of tests {U ) has asymptotic significance a and power 8 > a.n 1
In other words, if c(a) is such that P(f W2 (t)dt > c(a)) - a, then P - *(to, a, 6) -

1 o 0
is chosen so that P(f (Wo(t) + h(t))2dt > c(a)) = 8. Then the sample size n' n'(n)

0

required in order for the likelihood ratio test to have asymptotic significance a

and power 8 w.r..t. the sequence of shifts 0(to, a, On is found by solving
nto(l-t) )- p-.

(n' ((2 in2 n')) + n + o(i)) = (to, a, B)n - 3 (cf. (3.2)) where

= n(a, 8) satisfies a + S()(l-a) - 8. It is easily seen that n' should grow

like (2n in2 n)/(*
2 (to, a, )t (l-to)). This suggests defining the analogue of

20 0

m Pitman efficiency (depending on tot a, 8) of the sequence of tests (T } w.r.t.
n

{Un) by n/n' " '2(t a, a )t (1-t )/(2 in2 n). Thus for the sequence of alternatives
n 0 02

• specified above, {U I is more efficient than {T I when n is very large (althoughn n

in In n grows rather slowly).

For the second comparison, we consider the sequence of alternatives {H..
(n)

where the amount of shift 0 is now held constant but to - n-1 n - n1- Y d 1 - n -Y,

;I < y < 1, is approaching 1. Then for the alternatives {H the sequence of tests
(n)

{T is more powerful than {U since
n n

%S.- ." .'- -.- --' -, ." -'. ' - - '- " . " -. -'- .-, . ' ., ,- - " ' ". " ' ' " - ' -'- : - - ..-.,- ....-.. " ' '.- - - . ".' ', .-. - " ....- ..
'.-'-.'-..'"-.- ..-'. '-.'--.-'- .- ''...'°.'i. i-... .-....--....'....". .-- "... ..-.. ..-. ....... ". .. '. ..... .,-. .-...--. .--. "--. ."-.. . . . . . . . ..-. .- v -. i.
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(3.10) P(U n c(a)IH (n) -*

while

(3.11) P(T > cH (n) )  1,

where cn is given by (3.1).

The proof of these two results is as follows: Let Yi be iid N(O, 1). Then

U rn n l r ( x i + l 1- rl\ - Y7 - .n(i)])

/m = r1 i-r 1-22

+ n- 2  i n-l 2n-
rinl i-r g(i+l))

where

-(1-[n - n -YI/n)G if i <En n 1.-Y]

gn([n - n Y/n)O if i > [n - n •-].

n-1 n-I if 1
Since n 2 - (-(Y - 7 W2 (t)dt, it suffices to show

r1 ir 0

(3.12) n -2  I g(i+l o(1).
r~ 1 -m

We have for < 1,

n-in- i-r.n-2 n ni~ g (i+1)) < n-2 nfn- 1 n -En- nljylnlO

+ (n - n - ni-J)te}2-

< n-1( 2nl-vYe1  + O(i))2

40 as n

which establishes (3.12) and thus proves (3.10).

As for (3.11), we have

-' .-. of

.~~~ .° . .. . .
. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . • °
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1W(t) fn(t)t " t - + nt-tlt) - o to nT > nV( 1- Y) +o(n12 ( I - Y) )
n -- (to0 (lto))hi (t 0 (l-t0 ))

j eln (1-)+ o (np -

whence

P(T n > c n ) -+ 1.
P Tn >cn H(n)

Note that (3.11) remains true if t - 1 - n- ¥ for any y, 0 < y < 1.0
Remark 3.1. The simulation results of Sen and Srivastava (1975) tend to support

the above conclusions even for moderate sample sizes. They show that for 20 < n < 100,

tTn ) is less powerful than {Un I when t is close to ; and more powerful when t is

close to 0 or 1. When n is moderately large, the factor *2(to, a, O)to(l-to) in

the above efficiency calculation may dominate the 2 In2 n piece. Based on Sen

and Srivastava's simulation results, it seems likely that for fixed a and 8,

2(t o a, O)t (1-t o ) increases as It - 1 1. Actually when t % 1, then h(t) -

0(1 - t ) and *(to, a, B) is of the order (1 - to) so that the factor *(t o , a, 8)t
0 0 0

(1 - t ) is of the order (1 - t ) - . This argument gives a heuristic explanation

as to why the sequence of tests {T n ) is more powerful than {U n  when (1 - t ) (or

t0 ) converges to zero sufficiently fast.0
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